Ex. 2: Integration - Disk of charge

Circular filament (we already know the field at P from it!)
Field is along \(\hat{k} \)

\[\sigma = \frac{Q}{\pi a^2} \]

Integrate over set of rings, each of radius \(r \) and thickness \(dr \), with charge \(dQ = \sigma 2\pi r dr \)

\[
\hat{E} = k\sigma \pi z k \int_{r=0}^{a} \frac{2rdr}{(z^2 + r^2)^{3/2}}
\]

\[
\hat{E} = 2k\sigma \pi k \left(1 - \frac{z}{\sqrt{z^2 + a^2}} \right)
\]

Volume charge density \(\rho \) and Gauss's law

- Volume charge density \(\rho \): \(dQ = \rho dV \);
- If volume charge density is uniform, \(\rho = Q/V \);
- Example: Infinite "slab" of charge (Gauss's law)

Uniform volume charge density \(\rho \)

Field above slab same as that of infinite sheet of charge with \(\sigma = \rho w \)

\[
\hat{E} = \frac{\rho w}{2\varepsilon_0} \hat{k}
\]

Inside slab, use Gaussian box going from -z to +z with area \(A \) top and bottom. Again, \(\hat{E} = E \hat{k} \), so

\[
\Phi_E = EA + EA = \frac{Q_{im}}{\varepsilon_0} = \frac{\rho (2z) A}{\varepsilon_0}
\]

\[
2EA = \frac{2\rho zA}{\varepsilon_0}
\]

\[
E = \frac{\rho z}{\varepsilon_0}
\]

\[
\hat{E} = \frac{\rho z}{\varepsilon_0} \hat{k} \ldots \text{ for } |z| < \frac{w}{2}
\]

Note that the sign automatically changes for \(z < 0 \)
Question: Start at midpoint and move up; how does \(E \) change?

Motion of charge in Electric Field

- Nothing new - electric force acts like any other force; charge \(q \) of mass \(m \) in field \(E \) has acceleration:

\[
\vec{a} = \frac{q}{m} \vec{E}
\]

- Object containing equal amounts of pos. & neg. charge will not feel force in uniform \(\vec{E} \), but will feel force if \(\vec{E} \) varies with position.
Electric Dipole

- Common arrangement of charges:
 \[-Q \quad +Q \]
 \[\overrightarrow{p} \]
- No net charge on dipole, but charges separated
- Example: water molecule
- Dipole moment \(\overrightarrow{p} = Q \overrightarrow{l} \) where \(\overrightarrow{l} \) is the vector from the negative charge to the positive charge

Forces and Torques on Dipole

- Dipole placed in uniform field feels no net force
 \[\overrightarrow{F}_{\text{total}} = Q\overrightarrow{E} + (-Q)\overrightarrow{E} = 0 \]
- Feels net torque:
 \[\overrightarrow{\tau}_{\text{total}} = \sum_{i} \overrightarrow{r}_{i} \times \overrightarrow{F}_{i} \]
 \[\overrightarrow{r}_{i} = 0 \ldots \overrightarrow{r}_{3} = \overrightarrow{l} \]
 \[\overrightarrow{\tau}_{\text{total}} = \overrightarrow{l} \times Q\overrightarrow{E} = Q\overrightarrow{l} \times \overrightarrow{E} \]
Thus torque on dipole is
 \[\overrightarrow{\tau} = \overrightarrow{p} \times \overrightarrow{E} \]

Question: Direction of torque?

Torque example

- What is the magnitude of the torque on a dipole with \(p = 0.01 \text{ C} \cdot \text{m} \) and in field of strength \(E = 100 \text{ N/C} \) if the angle between \(\overrightarrow{p} \) and \(\overrightarrow{E} \) is 30°?
- Is the torque on a dipole in an E field ever zero?

Electric Potential Energy

- Remember gravitational potential energy \(U = mgh \) for object of mass \(m \) at height \(h \) above zero potential reference position (valid near Earth surface)
 - Describes energy stored when work done against conservative force (gravity)
 - \(g \) is strength of Earth gravitational field (in N/kg)
 - We must do work on mass \(m \) to increase its gravitational potential energy
- A charged particle in an electric field has electric potential energy (electric force is conservative)

<table>
<thead>
<tr>
<th>Coupling strength</th>
<th>Field</th>
<th>Potential Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Gravitational</td>
<td>Gravitational</td>
</tr>
<tr>
<td>Charge</td>
<td>Electric</td>
<td>Electric</td>
</tr>
</tbody>
</table>