Ferromagnetism (Q1)

- Ferromagnetic materials have atoms with large magnetic moments and interactions between internal dipole moments that can maintain alignment without external field
 - Iron, nickel, cobalt, iron oxide, cobalt oxide
- Magnetic moments align within regions called **domains**, but domains have random directions if no applied mag. field

- Applying an external \mathbf{B} to the ferromagnetic material causes growth of domains aligned with external field

- Material becomes magnetized

- Very large effect - internal field thousands of times larger than applied field
 - Iron (98.8% pure): $\frac{B_{\text{int}}}{B_{\text{app}}} = 5000$
 - Iron (99.95% pure): $\frac{B_{\text{int}}}{B_{\text{app}}} = 200,000$

- Two classes of ferromagnetic materials
 - Magnetically **soft**: Domain alignment disappears when applied field removed; no "memory", or hysteresis (pure iron)
 - Magnetically **hard**: some domain alignment remains when applied field removed; has “memory” (hysteresis). (Iron alloys, iron oxide)
- Magnetically hard ferromagnetic material can make a permanent magnet

Magnetization and Magnetization Curve

- Magnetization \mathbf{M}: Magnetic dipole moment per unit volume:
 \[
 \mathbf{M} = \frac{\sum\mathbf{m}_i}{\text{Volume}}
 \]
- Magnetization curve Plot \mathbf{M} as a function of B_{applied}
 - “Soft” material

Applications of Ferromagnetic Magnetization

- Electromagnet with core:
 - Magnetic Recording:
 - Core (soft iron)

- Residual magnetization allows for permanent magnet, or for information storage
- Residual magnetism can be lost at high temperature (Curie temperature)
Magnetic Data Storage

- "Hard" drive:

- "Floppy" Disk:
 - Magnetic Specifications. Sony MFD-2HD:
 Residual Magnetic Flux Density: 75 mT
 Squareness: 0.7
 - Videotape, credit cards, ...

Permanent Magnets

- Ferromagnetic material with residual magnetization

- Lines of \mathbf{B} emerge from “North pole” of magnet and return into “South pole.”

As with charges, like poles repel, unlike poles attract (but never find isolated magnetic poles; only dipoles)

Magnetic compass is a permanent magnet on a pivot

Magnetic Field Intensity \mathbf{H} and Susceptibility

- Magnetic Field Intensity \mathbf{H} is basically the “applied” magnetic field divided by μ_0:
 \[
 \mathbf{H} \equiv \frac{\mathbf{B}}{\mu_0} - \mathbf{M}
 \]

- Unit of \mathbf{H}: A/m

- For most materials, the magnetization \mathbf{M} is related to \mathbf{H} by the magnetic susceptibility χ_m:
 \[
 \mathbf{M} = \chi_m \mathbf{H}
 \]

- Magnetic susceptibility (dimensionless) is positive for paramagnetic materials, negative for diamagnetic. It is usually <<1 (see text Table 29.2), but is large for ferromagnetic materials. It has a complicated temperature dependence. (Q2)