1) Derivation of equation of state. In a certain system the internal energy E is related to the entropy S, the particle number N, and the volume V through

$$E = \text{constant} \times N \left(\frac{N}{V} \right)^\alpha \exp \left\{ \frac{\alpha S}{N k} \right\}.$$

a) Show that the system satisfies the ideal gas law independent of the value of the constant α.

b) Find the coefficient γ in the adiabatic equation of state $p v^\gamma = \text{constant}$ ($v = V/N$) and the specific heats C_p and C_V of the system.