Problem Set #1 - Math Review

1. Point P is located at \(x = 2, y = -1, z = 1 \). Point Q is located at \(x = 1, y = 2, z = 0 \). What is the vector that points from P to Q?

2. A train goes between three stops A, B, and C, in that order. From A to B, the train travels 75 km south and between B and C, it travels 55 km northwest.
 (a) Show the locations of A, B, and C on a diagram with clearly labeled coordinate axes.
 (b) Calculate the components of the train’s displacement between A and C.
 (c) What are the magnitude and direction of the displacement?

3. On your computer or graphing calculator, graph the function \(f(x) = x + 3\sin x \) in the rectangle \(x = [0,8] \) and \(y = [-1,8] \) (please, use radians).
 (a) Sketch the graph.
 (b) By visual inspection, on which interval is the average rate of change larger: \([1,2]\) or \([3,4]\)?
 (c) At which value of \(x \) is the instantaneous rate of change larger: \(x = 2 \) or \(x = 6 \)?
 (d) Check your visual estimates in part (b) by computing \(f'(x) \) and comparing the numerical values of \(f'(2) \) and \(f'(5) \).

4. A car moves on a straight line with an acceleration that increases linearly with time: \(a(t) = bt \), where \(b \) is a constant. Find the particle’s displacement and velocity as functions of time.

5. Consider the triangle below as a collection of horizontal strips of height \(dy \). Calculate the area of the triangle by integrating -- that is, by summing the areas of the differential strips. Note that the hardest part of this problem is the setup. For a refresher on integration techniques, refer to Lea and Burke, pages 248-253. Does your answer make sense?