Energy Conservation in Oscillatory Motion

In an ideal system with no nonconservative forces, total mechanical energy is conserved. For a mass on a spring:

\[E = K + U = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 \]

Since we know the position and velocity as functions of time, we can find the maximum kinetic and potential energies:

\[U_{\text{max}} = \frac{1}{2}kA^2 \]
\[K_{\text{max}} = \frac{1}{2}mA^2\omega^2 = \frac{1}{2}mA^2(k/m) = \frac{1}{2}kA^2 \]

Energy Conservation in Oscillations

As a function of time,

\[E = U + K = \frac{1}{2}kA^2 \cos^2(\omega t) + \frac{1}{2}kA^2 \sin^2(\omega t) \]
\[= \frac{1}{2}kA^2[\cos^2(\omega t) + \sin^2(\omega t)] = \frac{1}{2}kA^2 \]

Total energy is constant; as kinetic energy increases, potential energy decreases, & vice versa.

\[E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{\text{max}}^2 = \text{constant} \]

\[
\begin{array}{c}
\text{anywhere} \\
\downarrow \\
\text{at } x = \pm A \\
\downarrow \\
\text{center}
\end{array}
\]

Energy Conservation in Oscillatory Motion

This diagram shows how the energy transforms from potential to kinetic and back, while the total energy remains the same.
Using Conservation of Energy
A 0.5 kg block on spring with k = 100 N/m is pulled a distance of 0.2 m from equilibrium and released. How fast is it going when it gets to equilibrium position?

At x=A=0.2m, energy all potential:
E = \frac{1}{2}kx^2 = \frac{1}{2}(100 \text{ N/m})(0.2 \text{ m})^2 = 2 \text{ J}

At equilibrium position (x=0) energy all kinetic:
E = 2J = \frac{1}{2}mv^2; \; v^2 = 4J/0.5kg = 8 \text{ m}^2/\text{s}^2
v = 2.83 \text{ m/s} = v_{\text{max}}

Using Conservation of Energy
What is the speed of the block when x = 0.1m?

\[E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \frac{1}{2}kA^2 - kx^2 \]
\[mv^2 = kA^2 - kx^2 \]
\[v = \sqrt{\frac{k}{m} \left(A^2 - x^2 \right)} \]
\[= \sqrt{\frac{100 \text{ N/m}}{0.5 \text{ kg}}} \left[(0.2 \text{ m})^2 - (0.1 \text{ m})^2 \right] \]
\[= 2.45 \text{ m/s} \]

Question 1
Four springs have been compressed from their equilibrium positions at x = 0. Which system has the largest maximum speed in its oscillation?

(a) \hspace{1cm} (b) \hspace{1cm} (c) \hspace{1cm} (d)

The Simple Pendulum
A simple pendulum consists of a mass m (of negligible size) suspended by a string of length L (and negligible mass).

The angle \theta that it makes with the vertical approximately does SHM.
Period of Simple Pendulum

The period of a simple pendulum depends only on g and the length L of the string (and is independent of mass):

$$ T = 2\pi \sqrt{\frac{L}{g}} $$

Damped Oscillations

In most oscillations, there are nonconservative forces such as air drag which tend to decrease the amplitude of the oscillation over time.

Critical Damping

If you don’t want oscillation of a mass-spring system, add enough drag to get critical damping.

Then, the system returns to equilibrium as fast as possible without oscillating.

Used in car shock absorbers.

Driven Oscillations & Resonance

An oscillation can be driven by an oscillating driving force; the frequency of the driving force may or may not be the same as the natural frequency f_0 of the system.

Pendulum: $f_0 = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$

Mass+Spring: $f_0 = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
Driven Oscillations & Resonance

If the driving frequency is close to the natural frequency, the amplitude can become quite large, especially if the damping is small. This is called resonance.

Small damping: sharp peak
Large damping: broad peak

The resonant frequency f_0 is not shifted by damping.

Fluid Mechanics (Chap. 15)

- Fluid - Material with no definite shape; takes shape of container
 - Liquid
 - Gas
- Can move by "flow"
- Properties:
 - Density
 - Pressure
 - Buoyant Force
 - Volume flow rate
 - Viscosity (fluid friction)

15-1 Density

The (mass) density of a material is its mass M per unit volume V:

\[
\rho = \frac{M}{V}
\]

SI unit: kg/m3

The densities of most liquids and solids vary slightly with changes in temperature and pressure.

Densities of gases vary greatly with changes in temperature and pressure.

Density Values

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (at 4°C)</td>
<td>1000 (1 g/cm3)</td>
</tr>
<tr>
<td>Lead</td>
<td>11,300</td>
</tr>
<tr>
<td>Gold</td>
<td>19,300</td>
</tr>
<tr>
<td>Air</td>
<td>1.29</td>
</tr>
<tr>
<td>Helium</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The specific gravity of a substance is the ratio of its density to that of water.
15-2 Pressure
Pressure is force per unit area:

Definition of Pressure, P

$P = F/A$

SI unit: N/m2 or Pascal (Pa)

1 Pa = 1 N/m2

Other common pressure units:
- Pounds per Square inch (PSI) - tires, etc.
- mm Hg - blood pressure
- inches Hg - weather barometer

Pressure vs. Contact Area
The same force applied over a smaller area results in greater pressure – think of poking a balloon with your finger and then with a needle.

Example
- What is pressure exerted by 80-kg person’s shoe on floor if shoe is 0.3 m by 0.1 m and each shoe supports half of total weight?

$P = \frac{W/2}{A} = \frac{(80 \text{ kg})(9.8 \text{ N/kg})/2}{(0.3 \text{ m})(0.1 \text{ m})} = 1.3 \times 10^4 \text{ N/m}^2$

= 13 kPa

- What if half of weight rests on 0.005 m by 0.005 m stiletto heel?

$P = 1.6 \times 10^7 \text{ Pa}$

Measuring Pressure
Instruments for pressure measurement: manometer, barometer, pressure gauge

This is a mercury manometer - pressure P_0 lifts column of mercury to height h. Can give pressure reading in “mm of Hg”
End of Lecture 25

- For Friday, Nov. 6, read Walker 15.3-5.
- Homework Assignment 13b is due at 11:00 PM on Sunday, Nov. 8.