AVAILABLE EXPERIMENTS

Faraday Rotation. Observe the rotation of polarization of light produced by applying a magnetic field as the light propagates through glass. Interesting effect; good use of lock-in amplifier.
Difficulty: Low - Moderate
Time: Short
Computer Data Acq.: No
Data Acq. Programming: No
Pre-requisites: Lock-in amp tutorial.

Lifetime of Cosmic Ray Muons. Capture cosmic ray muons in a scintillator detector; build up a distribution of decay times from which the muon lifetime can be determined. Learn high energy physics techniques.
Difficulty: Low-Moderate
Time: Short
Computer Data Acq.: Yes
Data Acq. Programming: No
Pre-requisites: Basic nuclear counting experiment.

Resonant Circuit Impedance vs. Frequency: Construct a capacitor-inductor resonant circuit with variable damping (resistance); use computer-controlled data acquisition to plot impedance response.
Difficulty: Low-Moderate
Time: Short
Computer Data Acq: Yes
Data Acq. Programming: Yes
Pre-requisites: AC circuit theory, MATLAB data acquisition programming

Gamma Spectroscopy. Use computer pulse height analyzer and scintillator to study the energy spectra of gamma rays from several nuclei; observe evidence for creation and annihilation of antimatter.
Difficulty: Moderate
Time: Medium
Computer Data Acq: Yes
Data Acq. Programming: No
Pre-requisites: Radiation Safety; Basic nuclear counting

Energy gap in a Semiconductor: Computerized data acquisition of the variation of the reverse saturation current of a p-n diode with temperature; determine energy gap.
Difficulty: Low
Time: Short
Computer Data Acq: Yes
Data Acq. Programming: Yes
Pre-requisites: MATLAB GPIB programming

Specific Heat of Copper: Fit prediction of Debye theory of heat capacity dependence on temperature; computer collects data using GPIB and MATLAB program which you write.
Difficulty: Low
Time: Short
Computer Data Acq: Yes
Data Acq. Programming: Yes
Pre-requisites: MATLAB GPIB programming

Shot Noise and Electron Charge: Measure the charge of the electron by observing the fluctuations in current flow from a photoelectric cell. (Computerization possible).
Difficulty: Low/moderate
Time: Short
Computer Data Acq: No
Data Acq. Programming: No
Pre-requisites: Knowledge of filters and bandwidth

Capacitance of a Ferroelectric: Use computerized capacitance meter to study ferroelectric phase transition as a function of temperature.
Difficulty: Low-moderate
Time: Short
Computer Data Acq: Yes
Data Acq. Programming: Yes
Pre-requisites: MATLAB GPIB Programming

Transmission Lines and Speed of Light in Dielectrics: Study propagation of voltage pulses on an electromagnetic transmission line (coaxial cable) and determine the speed of light in a dielectric material.
Difficulty: Low
Time: Short
Computer Data Acq: No
Data Acq. Programming: No
Pre-requisites: Notes.

Bragg Diffraction of X-Rays: Use computer-controlled motor to automate scanning; determine lattice spacing in a crystal.
Difficulty: Low-Mod.
Time: Short/med
Computer Data Acq: Yes
Pre-requisites: Knowledge of Bragg Law and crystal structure

Beta-Particle Magnetic Spectrometer. Determine energy spectrum of beta particles from a radioactive source by observing magnetic deflection of particles. Show evidence for existence of neutrinos.
Difficulty: Low
Time: Med.
Computer Data Acq: No
Data Acq. Programming: No
Thermionic Emission of Electrons: Study emission of electrons from heated metal; Stefan-Boltzmann T^4 radiation law.

- **Difficulty:** Expt-Low; Anlyz-Med.
- **Time:** Short
- **Computer Data Acq:** Option
- **Data Acq. Programming:** Option
- **Pre-requisites:** MATLAB GPIB Programming
- **Notes:**

High Temperature Superconducting Quantum Interference Device (SQUID). Observe flux quantization in superconductor and produce quantum state transitions using microwave photons.

- **Difficulty:** Low/med
- **Time:** Short
- **Computer Data Acq:** Option
- **Data Acq. Programming:** No
- **Pre-requisites:**
- **Notes:**

Cavendish Experiment - Measurement of G. Direct measurement of weakest force of nature. Use capacitive angle detector (or laser “optical lever”) and computer data acquisition to measure G.

- **Difficulty:** Moderate-high
- **Time:** Medium
- **Computer Data Acq:** Yes
- **Data Acq. Programming:** No
- **Pre-requisites:**
- **Notes:**

Mossbauer Effect. Observe resonant gamma-ray absorption, to incredible precision. Uses computer-based multichannel scaler.

- **Difficulty:** High
- **Time:** Moderate
- **Computer Data Acq:** Yes
- **Data Acq. Programming:** No
- **Pre-requisites:** Radiation safety; basic nuclear counting
- **Notes:**

Hall Effect in p-Germanium. Observe the magnitude and sign of the Hall effect in p-doped Germanium as the sample temperature is varied. Interesting combination of electrical, magnetic, and thermal measurements.

- **Difficulty:** Low/med
- **Time:** Short
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:** Knowledge of basic semiconductor physics
- **Notes:**

Earth-Field Nuclear Magnetic Induction-Advanced. Observe precession of nuclei in the Earth’s magnetic field as their magnetic moments are polarized and depolarized. Observe spin echoes and do imaging.

- **Difficulty:** Low/med
- **Time:** Short
- **Computer Data Acq:** Yes
- **Data Acq. Programming:** No
- **Pre-requisites:**
- **Notes:**

Single Photon Interference. Use photon counting techniques with a very faint light source to observe two-slit diffraction when only one photon at a time is passing through the system of slits.

- **Difficulty:** Low/med
- **Time:** Short
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:**
- **Notes:**

Laser Spectroscopy of Rubidium. Use a tunable diode laser to study the optical absorption spectrum of hot Rubidium gas. Application of a magnetic field allows the Zeeman effect to be observed.

- **Difficulty:** Medium
- **Time:** Short/Med
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:** Laser Safety Training
- **Notes:**

Pulsed NMR: Use radio-frequency pulses to polarize nuclear spins, observe spin echoes, and study molecular structure by observing the effect of local magnetic fields on nuclear magnetic moments.

- **Difficulty:** High
- **Time:** Med
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:** Completion of Earth-Field Nuclear Induction recommended
- **Notes:**

Electron Spin Resonance (ESR): Use radio-frequency signals to interact with electron spins polarized by a dc magnetic field and achieve resonance with the electron spin precession.

- **Difficulty:** Medium
- **Time:** Short/Med
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:** Knowledge modulation spectroscopy and lock-in amp
- **Notes:**

Johnson Noise in Resistors: Study dependence of noise on resistance, resistor material, and current.

- **Difficulty:** Low/moderate
- **Time:** Short
- **Computer Data Acq:** No
- **Data Acq. Programming:** No
- **Pre-requisites:** Knowledge of filters and bandwidth
- **Notes:**

Dark Current & Noise in CCD Detectors: Study dependence of CCD dark current & noise on temperature and light level.

- **Difficulty:** Mod;
- **Time:** Short;
- **Computer Data Acq:** Yes;
- **Data Acq. Programming:** No
- **Pre-requisites:**
- **Notes:**