Physics

2

I'll use 6m and 30 degrees
(ccw from +x axis)

\[D_x = 6 \text{m} \cos 30^\circ = +5.2 \text{m} \]

\[D_y = 6 \text{m} \sin 30^\circ = +3 \text{m} \]

\[(D \sin \theta) \]

\[D : \]

\[D_x = +5.2 \text{m} \]

\[D_y = +3 \text{m} \]

\[\vec{V}_v \]

\[\vec{V}_{vx} = -6.43 \text{ m/s} \]

\[\vec{V}_{vy} = -7.7 \text{ m/s} \]

b.

I'll use:

10 m/s

40 degrees

(cw from -y axis)

\[v_{vy} = v_{vy} \cos \theta \]

\[-10 \text{ m/s} \cos 40^\circ \]

\[= -7.7 \text{ m/s} \]

\[v_{vy} = -10 \text{ m/s} \sin 40^\circ \]

\[= -6.43 \text{ m/s} \]

\[\theta = \tan^{-1} \left(\frac{10 \text{ m/s}}{10 \text{ m/s}} \right) = \tan^{-1} \left(\frac{10 \text{ m/s}}{10 \text{ m/s}} \right) = 51.3^\circ \]

\[\vec{Q} = 6.4 \text{ m}, 51.3^\circ \text{ cw from } -x \text{ axis} \]

\[Q = \sqrt{Q_x^2 + Q_y^2} \]

\[= 6.4 \text{ m} \]

\[Q_x = -4 \text{ m} \]

\[Q_y = +5 \text{ m} \]

\[v_{fy} \text{ will be } -100 \text{sin50} \text{ since level ground, don't need this though.} \]

c.

I'll use:

100 m/s

50 degrees

\[v_{x} = +100 \text{ m/s} \cos 50^\circ \]

\[v_{y} = +100 \text{ m/s} \sin 50^\circ \]

a. Time of flight determined by y-dir:

\[\Delta y = v_{y} t + \frac{1}{2} a_y t^2 \]

\[\Delta y = (100 \sin 50^\circ) t + \frac{1}{2} (-9.8) t^2 \]

\[\text{Divide through by } t \]

\[0 = (100 \sin 50^\circ) + \frac{1}{2} (-9.8) t \]

\[t = 15.65 \text{ s} \]

b.

\[\text{time of flight determined by y-dir} \]

\[\Delta y = v_{y} t + \frac{1}{2} a_y t^2 \]

\[\Delta y = (100 \sin 50^\circ) t + \frac{1}{2} (-9.8) t^2 \]

\[\text{Divide through by } t \]

\[0 = (100 \sin 50^\circ) + \frac{1}{2} (-9.8) t \]

\[t = 15.65 \text{ s} \]
b. \(\Delta y \), \(v_{i_y} \), \(v_{f_y} \), \(q_y \)

\[\Delta y = v_{i_y} + 100 \sin 50^\circ \cdot 0 - 9.8 \]

\[v_{f_y}^2 = v_{i_y}^2 + 2q_y \Delta y \]

\[\Delta y = +300 \text{ m} \]

will reach maximum height of 300 m above ground

\[\Delta x = v_{i_x} + \frac{1}{2}a_x t^2 \]

\[\Delta x = v_{i_x} \]

\[\Delta x = (100 \cos 50^\circ \text{ m/s})(15.6 \text{ s}) = +1003 \text{ m} \]

\[\text{time of flight is determined by } y \text{ direction.} \]

In this problem, neither \(\Delta y \) nor \(v_y \) are zero, so I'll use judgment.

I'll use:
- fired at 5 m/s
- 50 degrees above horizon, 30 m tall cliff
\[\Delta y = v_{y1} t + \frac{1}{2} a_y t^2 \]

\[-30 = (5 \sin 50) t + \frac{1}{2} (-9.8) t^2 \]

\[3.83 = 5 \sin 50 \]

\[-4.9t^2 + 3.83t + 30 = 0 \]

\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[t = \frac{-3.83 \pm \sqrt{(3.83)^2 - 4(-9.8)(30)}}{2(-4.9)} \]

\[t = 2.89 \text{ s} \]

I'll use: runs off 5 m/s board 3 m above water

\[\Delta y = v_{y1} t + \frac{1}{2} a_y t^2 \]

\[t = 0.78 \text{ s} \]

\[\Delta x = v_{x1} t = (5 \text{ m/s}) (0.78 \text{ s}) \]

\[\Delta x = 3.9 \text{ m} \]

\[3.9 \text{ m from board horizontally} \]

\[3.7 \text{ m from plane} \]

C.) some is initially, \[5 \text{ m/s} \]

since x component of velocity cannot change. \[(a_x = 0) \]

\[v_{y1}^2 = v_{x1}^2 + 2a_y \Delta y = 50.8 \quad v_{y1} = \pm 7.7 \text{ m/s} \]
\[V_{f_y} = -7.7 \text{ m/s} \] since makes physical sense, \(V_{f_y} \) is downward.

e.

\[V_{f_x} = +5 \text{ m/s} \]

\[V_{f} = \sqrt{V_{f_x}^2 + V_{f_y}^2} \]

\[V_{f} = \sqrt{5^2 + (-7.7)^2} \approx 9.2 \text{ m/s} \]

\[\theta = \tan^{-1} \left(\frac{1000}{1000} \right) = \tan^{-1} \left(\frac{1 - 7.7}{1 + 5} \right) \]

\[\theta = 57^\circ \]

f.

Any thing involving \(x \) direction would change, but since \(x \) direction can't affect \(y \) direction, nothing involving only \(y \) direction would change.

b, c, e would change \(x \) dir involved

a, d would not change \(y \) dir only

#5

I'll use:

- fired at 35 degrees
- flies horiz 1.3 m in 1.25 s

\[\Delta x = v_{i_x} t \]

\[v_{i_x} = \frac{\Delta x}{t} = \frac{1.3}{1.25} = 1.04 \text{ m/s} \]

Initial speed of cork

is 1.3 m/s
I'll use: 9 m tall tower, target is 3.5 m from base.

\[\Delta y = v_{iy} t + \frac{1}{2} g t^2 \]
\[-9 = 0 + \frac{1}{2} (-9.8) t^2 \]
\[t = 1.36 \text{s} \]

\[\Delta x = v_{ix} t \]
\[v_{ix} = \frac{3.5 \text{m}}{1.36 \text{s}} \]

Initial horizontal speed needed to hit target is 2.6 m/s.

I'll use: thrown at 6.95 m/s, drops 1.4 m, sideways 8.75 m.

\[\Delta y = v_{iy} t + \frac{1}{2} g t^2 \]
\[-1.4 = 0 + \frac{1}{2} (-9.8) t^2 \]
\[t = 1.33 \text{s} \]

\[\Delta x = v_{ix} t \]
\[v_{ix} = \frac{8.75 \text{m}}{1.33 \text{s}} \]

similar to previous problem, but asking for \(v_{ix} \), not \(v_i \).

since don't have \(v_{ix} \), can't figure out \(t \) without \(y \) direction.

But have enough from \(x \) direction to find flight time: travel 8.75 m at 6.95 m/s, so can find time.

\[\Delta x = v_{ix} t \]
\[t = \frac{\Delta x}{v_{ix}} = \frac{8.75 \text{m}}{6.95 \text{m/s}} = 1.29 \text{s} \]
$a_y = 7.7 \text{ m/s}^2$ so size of acceleration due to gravity of Zircon (g_zircon) is 1.7 m/s2.

8. I'll use: push with 14 N on 12.5 kg cart for 3 seconds

9.

a.) 2 forces:

b.) the forces on the brick are:

- force on brick from earth (weight AKA force of gravity) (size: mg dir: downward)
- force on brick from hind (this is a normal force to the hind is a surface)

N acts up to, away from surface in this case that is upward.

c.) Yes, they are equal & opposite... if the brick is at rest, then $a_y = 0$. $F_{net, y} = mg$, so $F_{net, y} = 0$.

if the net force in the y direction is zero, then all y forces must cancel. So N and mg must be of equal size.

$$F_{net, y} = 0$$

$$N + mg = 0$$
d.) No, they are not.

- action-reaction pair of forces always acts on 2 different objects
 (if A exerts force on B, then B exerts force on A)

since N and mg both act on the brick, they cannot be. So what
is each of their action-reaction pair?

\[\begin{align*}
 (\text{force on brick from head}) & \rightarrow \quad N \\
 (\text{force on head from brick}) & \quad \downarrow m \\
 \text{action reaction pair} & \\
 \downarrow N & \quad (\text{force on brick from earth}) \\
 \quad \downarrow \text{(force on earth from brick)} & \quad \text{action reaction pair}
\end{align*} \]

- another way to think of it is that action-reaction pairs are always equal in size, opp. in dir.

but in this problem, N and mg are only coincidentally equal in size since the brick is at rest. If
the brick were accelerating upward, for instance,

\[N > mg \]

#10 Answered most of this above...

a) / b) some two forces: N, mg

c) No. These forces, while in opposite directions, will not be equal in size. In
order to accelerate upwards, need F \(\uparrow \) \(\text{Fet} \) upwards, so \(N > mg \)

Here, it is very evident why \(N > mg \), and action-reaction
pairs are always of the same size, so N \& mg are definitely not.
a.) force on child from parent is \(\text{some size (opp dir)} \) as force on parent from child.

This is an action-reaction pair.

b.)

\[
\begin{align*}
\mathbf{F}_{\text{net}} &= M_a \\
\mathbf{F}_{\text{net}} &= m \mathbf{a}
\end{align*}
\]

Each feels the same size force (opp dir),

but since parent's mass is greater, her acceleration will be less.

c.)

\[
\begin{align*}
\mathbf{F}_{\text{parent}} &= -\mathbf{F}_{\text{child}} \\
\mathbf{a}_{\text{parent}} &= -\mathbf{a}_{\text{child}} \\
m_{\text{parent}} \mathbf{a}_{\text{parent}} &= -m_{\text{child}} \mathbf{a}_{\text{child}}
\end{align*}
\]

I'll use:

\[
\begin{align*}
\mathbf{a}_{\text{child}} &= +2.6 \text{ m/s}^2 \\
m_{\text{child}} &= 16 \text{ kg} \\
m_{\text{parent}} &= 64 \text{ kg}
\end{align*}
\]

\[
\mathbf{a}_{\text{parent}} = -0.65 \text{ m/s}^2
\]

Parent has acceleration of size \(0.65 \text{ m/s}^2 \)

Indeed less than child's. (opp dir of child)

\[
\begin{align*}
\text{In fact, since parent's mass is quadruple the child's} \\
(64 \text{ kg} = 4 \times 16 \text{ kg})
\end{align*}
\]

\[
\text{The parent's acceleration is one-fourth the child's} \\
0.65 \text{ m/s}^2 = \frac{1}{4} \times 2.6 \text{ m/s}^2
\]

Same sized force on each.

\[
\begin{align*}
\mathbf{F}_{\text{child}} &= m_{\text{child}} \mathbf{a}_{\text{child}} \\
\mathbf{F}_{\text{parent}} &= m_{\text{parent}} \mathbf{a}_{\text{parent}} \\
\mathbf{F}_{\text{parent}} &= (4m_{\text{child}}) \left(\frac{\mathbf{a}_{\text{child}}}{4} \right) = m_{\text{child}} \mathbf{a}_{\text{child}}
\end{align*}
\]