Here's the data.  We compute the components of vave using the components of the displacement and the time interval. The y component of the average velocity stays constant at 2 m/s while the x component decreases. We take the limit as the time interval goes to zero to get the instantantaneous velocity components at t=1.3 s. The x-component is  1.84 m/s (about) and the y-component is 2.0 m/s.
Table of values
t(s) x (m) y (m) deltat(s) vx(m/s) vy(m/s)
0 0.00 0
0.1 0.00 0.2
0.2 0.01 0.4
0.3 0.02 0.6
0.4 0.05 0.8
0.5 0.09 1
0.6 0.14 1.2
0.7 0.20 1.4
0.8 0.29 1.6
0.9 0.38 1.8 1 1.89 2.00
1 0.5 2 0.8 1.87 2.00
1.1 0.63 2.2 0.6 1.87 2.00
1.2 0.79 2.4 0.4 1.86 2.00
1.3 0.96 2.6 0.2 1.85 2.00
1.4 1.16 2.8
1.5 1.38 3 0.2 2.30 2.00
1.6 1.62 3.2 0.4 2.30 2.00
1.7 1.88 3.4 0.6 2.31 2.00
1.8 2.17 3.6 0.8 2.32 2.00
1.9 2.49 3.8 1 2.33 2.00
2 2.83 4
2.1 3.20 4.2
2.2 3.59 4.4
2.3 4.01 4.6
2.4 4.46 4.8 

Repeating the analysis at t=1.5 s, we find vx = 2.30 m/s and no change in vy .  Thus the acceleration is in the x direction, with one component parallel to the velocity (the particle is speeding up) and one component perpendicular to the velocity (changing the direction.)