Magnetic moments

S.M. Lea

January 2019

1 The magnetic moment tensor

Our goal here is to develop a set of moments to describe the magnetic field due to steady currents as we did for the electric field in Ch 4 and sphermult notes. Because there are no magnetic monopoles, the dominant contribution to \mathbf{B} at a great distance from a current distribution is a dipole, so we start by looking at the dipole moment. For a planar loop, \mathbf{m} is defined to be (see Lea and Burke Ch 29):

$$\mathbf{m} = I \hat{A} \hat{n} = \frac{I}{2} \int \mathbf{x} \times d\mathbf{c}$$

(1)

where the current in the loop flows counter-clockwise around \hat{n} according to the right hand rule. (See figure)

(Note: the cross product gives the area of the parallelogram formed by \mathbf{x} and $d\mathbf{c}$, but we need the area of the triangle, or half the area of the parallelogram. The cross product also conveniently gives a direction normal to the area element.)

Cross products are pseudo-vectors, so we often prefer to use an antisymmetric tensor to describe such quantities. The magnetic moment tensor is defined by:

$$M_{ij} \equiv I \oint_{\text{loop}} x_i \, dx_j$$

(2)

for a current loop, or more generally,

$$M_{ij} \equiv \int x_i J_j \, dV$$

(3)

if the current density is not confined to wire loops. Each component of M in equation 2 represents the area of the projection of the loop onto the $i - j$ plane. Thus it should be related to the magnetic moment vector (1). Thus we consider the vector dual to M_{ij}, defined
by (see Lea Optional topic A eqn A.7):

\[m_p = \frac{1}{2} \varepsilon_{prs} M_{rs} \]

(4)

Then

\[m_p = \frac{1}{2} \varepsilon_{prs} \int x_r \, dx_s = \frac{1}{2} \int \varepsilon_{prs} x_r \, dx_s = \frac{1}{2} \int (\vec{x} \times d\vec{l})_p \]

in agreement with equation (1), showing that the magnetic moment vector is dual to the tensor \(M_{ij} \).

The dual relation has an inverse (Lea eqn A.8):

\[\varepsilon_{jkm} m_p = \varepsilon_{jkm} \frac{1}{2} \varepsilon_{prs} M_{rs} = \frac{1}{2} (\delta_{jr} \delta_{ks} - \delta_{js} \delta_{kr}) M_{rs} \]

\[= \frac{1}{2} (M_{jk} - M_{kj}) \]

But \(M_{ij} \) is antisymmetric:

\[M_{ij} = I \int x_i \, dx_j = I \left\{ x_i x_j \bigg|_p - \int x_j \, dx_i \right\} = 0 - M_{ji} \]

Thus:

\[\varepsilon_{jkm} m_p = M_{jk} \]

(5)

Alternative proof of antisymmetry for general, localized, current density \(\vec{J} \): First note that

\[\partial_k (x_i x_j J_k) = \delta_{ik} x_j J_k + \delta_{jk} x_i J_k + x_i x_j \partial_k J_k = x_j J_i + x_i J_j - x_i x_j \frac{\partial \rho}{\partial t} \]

where we used the charge conservation relation in the last step. In a steady state the last term is zero. Then

\[\int_V \partial_k (x_i x_j J_k) \, dV = \int_{S_{\infty}} x_i x_j J_k n_k \, dA = 0 \]

\[\int_V (x_j J_i + x_i J_j) \, dV = 0 \]

since \(\vec{J} = 0 \) on the surface at infinity, and so

\[\int_V x_j J_i \, dV = - \int_V x_i J_j \, dV \]

\[M_{ji} = -M_{ij} \]

(6)
2 Magnetic field due to a current loop

Here we will find the multipole expansion of the magnetic field due to a current loop. We start with the vector potential (Notes 1 eqn.21). As we did in the electric case, we use a Taylor series expansion of $1/R$ (multipole moment notes section 2) to get

$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{d\vec{x}'}{|\vec{x} - \vec{x}'|} = \frac{\mu_0}{4\pi} \int d\vec{x}' \left(\frac{1}{|\vec{x}'|} + \frac{\vec{x}' \cdot \vec{q} \cdot \vec{x}'}{2} + \cdots \right)$$

where the tensor \vec{q} has components (sphermult notes eqn 5)

$$q_{ij} = -\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \left(\frac{1}{|\vec{x} - \vec{x}'|} \right) \bigg|_{\vec{x}'=0} = -\frac{\delta_{ij}}{|\vec{x}'|} + \frac{3x_i x_j}{|\vec{x}'|^5}$$

(7)

We may integrate term by term because the Taylor series converges uniformly. Then, moving the functions of unprimed coordinates out of the integrals, we get

$$A_i = \frac{\mu_0}{4\pi} \frac{x_j}{|\vec{x}|} \int x_j' dx' + \frac{q_{jk}}{2} \int x'_j x'_k dx'_i + \cdots$$

$$A_i = \frac{\mu_0}{4\pi} \frac{x_j}{|\vec{x}|} \varepsilon_{jip} m_p + \cdots$$

(8)

where we used the dual inverse (5) in the last step. The leading term is the dipole:

$$\vec{A}_{\text{dipole}} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{x}}{|\vec{x}|^3}$$

(9)

(Compare with "magloop" notes eqn 5.) The next term in the expansion is the quadrupole:

$$A_{i,\text{quad}} = \frac{\mu_0}{4\pi} \frac{x_j}{|\vec{x}|} \int x'_j x'_k dx'_i = \frac{\mu_0}{8\pi} q_{jk} M_{jki}$$

where

$$M_{jki} = \int x'_j x'_k dx'_i$$

(10)

is a rank three tensor. This tensor is not easily expressed in terms of the vector \vec{m}. It does have some symmetry:

$$M_{ijk} = M_{jki}$$

(More on this below.) Compare with the quadrupole term in eqn (9) of the "sphermult" notes.

We can get \vec{B} from \vec{A}. The leading (dipole) term is:

$$\vec{B} = \vec{\nabla} \times \vec{A} = \vec{\nabla} \times \left(\frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{x}}{|\vec{x}|^3} \right) = -\frac{\mu_0}{4\pi} \vec{\nabla} \times \left(\vec{m} \times \vec{\nabla} \frac{1}{|\vec{x}|} \right)$$

$$= -\frac{\mu_0}{4\pi} \left[\vec{m} \left(\vec{\nabla} \cdot \frac{1}{|\vec{x}|} \right) + \left(\vec{\nabla} \frac{1}{|\vec{x}|} \right) \cdot \vec{m} - \vec{\nabla} \frac{1}{|\vec{x}|} \left(\vec{\nabla} \cdot \vec{m} \right) - \left(\vec{m} \cdot \vec{\nabla} \right) \frac{1}{|\vec{x}|} \right]$$

But \vec{m} is a constant vector, so all its derivatives are zero, and temporarily putting the $z-$axis
along \vec{m}, we get

$$\vec{B} = -\frac{\mu_0}{4\pi} \left(\vec{m} \nabla^2 \frac{1}{|\vec{x}|} - m \frac{\partial}{\partial z} \nabla \frac{1}{|\vec{x}|} \right)$$

Now we get the last term from eqn 22 of the multipole moments notes:

$$\vec{B} = -\frac{\mu_0}{4\pi} \left[\vec{m} \left(-4\pi \delta (\vec{x}) \right) + m \left\{ \frac{\hat{z}}{r^3} - 3 \frac{\vec{x} \cdot \hat{z}}{r^5} \right\} + \frac{4\pi}{3} \delta (\vec{x}) \hat{z} \right]$$

$$= -\frac{\mu_0}{4\pi} \left[\frac{3}{r^3} \vec{m} \cdot \vec{x} - \frac{\vec{m}}{r^3} + \frac{8\pi}{3} \delta (\vec{x}) \hat{m} \right]$$

which is Jackson’s eqn. 5.64. As with the electric dipole, there is a delta-function at the origin, but in the magnetic case it is parallel to (not opposite) \vec{m}.

The direction and magnitude of the delta-function term may be understood by looking at a tiny current loop model for the magnetic dipole. The magnetic field at the center of a loop of radius a is (magloop notes page 4)

$$\vec{B} = \mu_0 I \frac{\hat{n}}{2\pi a^2}$$

$$= \mu_0 \frac{I\pi a^2}{2\pi a^2} \hat{n} = \frac{2}{3} \mu_0 \frac{\vec{m}}{(4\pi a^3/3)}$$

As $a \to 0$, the magnetic dipole density $\to \vec{m} \delta (\vec{x})$ and we get

$$\vec{B} \to \frac{2}{3} \mu_0 \vec{m} \delta (\vec{x})$$

as in (11). Note that the electric dipole field delta function term (multipole notes eqn 20) differs from this result by a factor of 2 as well as the sign. See J pg 190 for applications of this to the energy of the hyperfine states of atomic systems.

3 Force and torque

3.1 Force

The force exerted on a steady current distribution \vec{J} by an external magnetic field \vec{B}_{ext} is:

$$\vec{F} = \int \vec{J} \times \vec{B}_{\text{ext}} \, dV$$

As we did in the electric case, we expand the external field in a Taylor series:

$$F_i = \int \varepsilon_{ijk} J_j B_{\text{ext},k} \, d^3x$$

$$= \int \varepsilon_{ijk} J_j \left(B_{\text{ext},k} (0) + x_n \frac{\partial B_{\text{ext},k}}{\partial x_n} \bigg|_0 + \frac{1}{2} x_n x_p \frac{\partial^2 B_{\text{ext},k}}{\partial x_n \partial x_p} \bigg|_0 \cdots \right) \, d^3x \quad \text{(12)}$$
We may use the time-independent Maxwell’s equations to rewrite the first term:

\[
\varepsilon_{ijk} B_{\text{ext}, k} (0) \int J_j d^3x = \frac{\varepsilon_{ijk} B_{\text{ext}, k} (0)}{\mu_0} \int (\nabla \times \vec{B})_j d^3x
\]

\[
= \frac{\varepsilon_{ijk} B_{\text{ext}, k} (0)}{\mu_0} \int_{S_{\infty}} (\hat{n} \times \vec{B})_j d^2x = 0
\]

since \(\vec{B} \) due to \(\vec{J} \) is proportional to \(1/r^3 \), as proved above. (For a current loop we have the more obvious result \(\oint I \, dx = 0 \).) Notice here that \(\vec{B} \) (due to \(\vec{J} \)) and \(B_{\text{ext}} \) are distinct fields.

Thus the first non-zero term in the force (12) is the second term:

\[
F_i = \int \varepsilon_{ijk} J_j x_n \frac{\partial B_{\text{ext}, k}}{\partial x_n} d^3x
\]

\[
= \varepsilon_{ijk} M_{nj} \frac{\partial B_{\text{ext}, k}}{\partial x_n} \Bigg|_0
\]

We may express this result in terms of the magnetic moment vector using (5):

\[
F_i = \varepsilon_{ijk} \varepsilon_{njp} m_p \frac{\partial B_{\text{ext}, k}}{\partial x_n} \Bigg|_0
\]

\[
= (\delta_{in} \delta_{kp} - \delta_{ip} \delta_{kn}) m_p \frac{\partial B_{\text{ext}, k}}{\partial x_n} \Bigg|_0
\]

\[
= m_k \frac{\partial B_{\text{ext}, k}}{\partial x_i} \Bigg|_0 - m_i \frac{\partial B_{\text{ext}, k}}{\partial x_k} \Bigg|_0
\]

But \(\nabla \cdot B_{\text{ext}} = 0 \), and we can bring the components \(m_k \) through the differential operator because they are constants. We also need the fact that \(\nabla \times B_{\text{ext}} = 0 \). Then

\[
\vec{F} = \nabla \left(m \cdot B_{\text{ext}} \right) \Bigg|_0
\]

(13)

This is the first non-zero term in a Taylor expansion of \(\vec{F} \). Note the relation between this expression for \(\vec{F} \) and the energy \(U = -\vec{m} \cdot \vec{B}_{\text{ext}} \) of a dipole in an external field.

\[
\vec{F} = -\nabla U
\]

as expected. (Note the discussion in J §5.16, pg 214, however, which shows the limitations of this interpretation.)

The next term is

\[
F_{i, \text{next}} = \varepsilon_{ijk} \frac{1}{2} \left(\frac{\partial^2 B_{\text{ext}, k}}{\partial x_m \partial x_n} \right) \Bigg|_0 \int J_j x_m x_n d^3x = \varepsilon_{ijk} \frac{1}{2} \frac{\partial^2 B_{\text{ext}, k}}{\partial x_m \partial x_n} \Bigg|_0 M_{mnj}
\]

Compare with the electric field result in Jackson Problem 4.5.

3.2 Torque

The torque exerted on a current distribution by the external field is

\[
\vec{T} = \int \vec{r} \times d\vec{F} = \int \vec{r} \times (\vec{J} \times \vec{B}_{\text{ext}}) d^3x
\]

\[
= \int \left[\vec{J} (\vec{r} \cdot \vec{B}_{\text{ext}}) - \vec{B}_{\text{ext}} (\vec{r} \cdot \vec{J}) \right] d^3x
\]
Using the same expansion as before, and dropping the subscript "ext" on $\vec{B} = \vec{B}_{\text{ext}}$ for clarity, we have:

$$\tau_i = \int \left[J_i x_k B_k (0) + J_i x_k x_m \frac{\partial B_k}{\partial x_m} \bigg|_0 + \cdots - B_i (0) x_k J_k - x_m \frac{\partial B_i}{\partial x_m} x_k J_k + \cdots \right] d^3x$$

Let’s look at the terms one at a time. The first term is

$$\tau_{i,1} = \int J_i x_k B_k (0) d^3 x = B_k (0) M_{ki} = B_k (0) \varepsilon_{kip} m_p$$

$$\mathbf{\vec{r}_1} = \mathbf{\vec{m} \times \vec{B}} (0)$$

(14)

The third term is

$$\int B_i (0) x_k J_k d^3 x = B_i (0) M_{kk} = 0$$

since M_{ij} is antisymmetric, and thus its trace is zero. Thus (14) is the total torque if \vec{B} is uniform. The other two terms are higher order corrections to the basic result (14)

$$\tau_i \text{ (correction terms)} = \left. \frac{\partial B_k}{\partial x_m} \right|_0 \int x_k x_m J_i d^3 x - \left. \frac{\partial B_i}{\partial x_m} \right|_0 \int x_m x_k J_k d^3 x$$

They involve the third rank tensor

$$M_{ijk} = \int x_i x_j x_k d^3 x$$

which also appeared in the expansion of \vec{A} (10). The correction terms are:

$$\tau_i \text{ (correction terms)} = \left. \frac{\partial B_k}{\partial x_m} \right|_0 M_{kmi} - \left. \frac{\partial B_i}{\partial x_m} \right|_0 M_{mkk}$$

(15)

3.3 An example

Consider a current loop made of of two rectangles: One in the $x - y$ plane with dimensions a by b, and one in the $y - z$ plane with dimensions b by a. Imagine forming this thing by bending a rectangle $2a$ by b through 90°. Then the magnetic moment tensor has components:

$$M_{12} = I \int x dy = I \int_0^b ady = I ab$$

$$M_{13} = I \int x dz = 0$$

$$M_{23} = I \int y dz = I \int_0^a bdz = I ab$$
Thus the tensor is:

\[M = I_{ab} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \]

The magnetic moment vector has components:

\[m_1 = \frac{1}{2} \varepsilon_{1jk} M_{jk} = \frac{1}{2} (M_{23} - M_{32}) = I_{ab} \]
\[m_2 = \frac{1}{2} \varepsilon_{2jk} M_{jk} = \frac{1}{2} (M_{31} - M_{13}) = 0 \]
\[m_3 = \frac{1}{2} \varepsilon_{3jk} M_{jk} = \frac{1}{2} (M_{12} - M_{21}) = I_{ab} \]

corresponding to the two planar parts of the loop. (Notice we can make up the bent loop from two planar loops stuck together along the \(y \)-axis.) Thus the magnetic field produced by this loop, at a large distance from the loop, is (eqn 11):

\[\vec{B} = \frac{\mu_0}{4\pi} \frac{1}{|\vec{x}|^3} \left(3\hat{\vec{r}} (\vec{m} \cdot \hat{\vec{r}}) - \vec{m} \right) \]
\[= \frac{\mu_0 I_{ab}}{4\pi} \frac{1}{|\vec{x}|^3} \left(3\hat{\vec{r}} \frac{\vec{x} + \vec{z}}{|\vec{x}|^2} - \hat{\vec{x}} - \hat{\vec{z}} \right) \]

Now we introduce the external magnetic field

\[\vec{B}_{\text{ext}} = B_0 (1 + \alpha x) \hat{\vec{x}} + B_0 (1 - \alpha y) \hat{\vec{y}} \]

(Notice that \(\nabla \cdot \vec{B}_{\text{ext}} = 0 \) and \(\nabla \times \vec{B}_{\text{ext}} = 0 \).) The force on the loop in this magnetic field is (eqn 13):

\[\vec{F} = \nabla \left(\vec{m} \cdot \vec{B}_{\text{ext}} \right) |_{0} = B_0 I_{ab} \nabla \left(1 + \alpha x \right) = B_0 I_{ab} \alpha \hat{\vec{x}} \]

Notice that this result is exact since the external magnetic field has no higher order derivatives. Check the dimensions!

The leading term in the torque is (eqn14):

\[\vec{\tau} = \vec{\omega} \times \vec{B} (0) \]
\[= B_0 I_{ab} (\hat{\vec{x}} + \hat{\vec{z}}) \times (\hat{\vec{x}} + \hat{\vec{y}}) \]
\[= B_0 I_{ab} (\hat{\vec{z}} + \hat{\vec{y}} - \hat{\vec{x}}) \]
The next term involves the tensor
\[M_{ijk} = I \int x_i x_j dx_k \]
and the first derivatives of \(\bar{B} \). The only non-zero derivatives are \(\partial B_x / \partial x = B_0 \alpha \) and \(\partial B_y / \partial y = -B_0 \alpha \). The correction terms (15) are thus:

\[
\tau_1 \text{ (correction terms)} = \frac{\partial B_k}{\partial x_m} \bigg|_{0} M_{km1} - \frac{\partial B_1}{\partial x_m} \bigg|_{0} M_{mkk}
\]

\[
= B_0 \alpha (M_{111} - M_{221} - M_{111} - M_{122} - M_{133})
\]

\[
= -B_0 \alpha (M_{221} + M_{122} + M_{133})
\]

\[
\tau_2 \text{ (correction terms)} = \frac{\partial B_k}{\partial x_m} \bigg|_{0} M_{km2} - \frac{\partial B_2}{\partial x_m} \bigg|_{0} M_{mkk}
\]

\[
= B_0 \alpha (M_{112} - M_{222} + M_{211} + M_{221} + M_{233})
\]

\[
= B_0 \alpha (M_{112} + M_{211} + M_{233})
\]

and

\[
\tau_3 \text{ (correction terms)} = \frac{\partial B_k}{\partial x_m} \bigg|_{0} M_{km3} - \frac{\partial B_3}{\partial x_m} \bigg|_{0} M_{mkk}
\]

\[
= B_0 \alpha (M_{113} - M_{223})
\]

Let’s find the values of \(M \) that we need:

\[
M_{112} = I \int x xdy = I \int_{0}^{b} a^2 dy = I a^2 b
\]

\[
M_{113} = I \int x xdz = 0
\]

\[
M_{122} = I \int x ydy = I \int_{0}^{b} aydy = I a b^2 / 2
\]

\[
M_{133} = I \int x zdz = 0
\]

\[
M_{211} = I \int y xdx = I \int_{a}^{0} b x dx = -I a^2 b / 2
\]

\[
M_{221} = I \int y ydx = I \int_{a}^{0} b^2 dx = -I a b^2
\]

\[
M_{223} = I \int y ydz = I \int_{0}^{a} b^2 dz = I a b^2
\]

\[
M_{233} = I \int y zdz = I \int_{0}^{a} b z dz = I a^2 b / 2
\]

Thus the correction terms are:

\[
\tau_1 \text{ (correction terms)} = -B_0 \alpha \left(-I a b^2 + I a b^2 / 2 + 0 \right) = \frac{1}{2} B_0 \alpha I a b^2
\]

8
\[\tau_2 \text{ (correction terms)} = B_0 \alpha \left(Ia^2 \frac{b}{2} - Ia^2 \frac{b^3}{2} \right) = B_0 \alpha Ia^2 b \]

and

\[\tau_3 \text{ (correction terms)} = B_0 \alpha (0 - Iab^2) = -B_0 \alpha Iab^2 \]

Thus:

\[\tau = B_0 Iab \left[\hat{z} (1 - \alpha b) + \hat{y} (1 + \alpha a) - \hat{x} \left(1 - \frac{\alpha b}{2} \right) \right] \]

Again this result is exact as there are no higher derivatives of \(\vec{B} \). Check the dimensions of the result.

If you need more terms, it is probably wise to choose a different approach.

4 Connection between magnetic moment and angular momentum

If a current distribution is made up of \(N \) particles, where particle \(i \) has position \(\vec{x}_i \), charge \(q_i \), mass \(\mu_i \), and moves with velocity \(\vec{v}_i \), then the current is due to the particles’ motion

\[\vec{j} = \sum_{i=1}^{N} q_i \vec{v}_i \delta (\vec{x} - \vec{x}_i) \]

and then the magnetic moment tensor components are

\[M_{pr} = \int x_p j_x dV = \sum_{i=1}^{N} q_i \int x_p \delta (\vec{x} - \vec{x}_i) dV \]

and the vector components are (eqn 4)

\[m_k = \frac{1}{2} \varepsilon_{kpr} M_{pr} = \frac{1}{2} \sum_{i=1}^{N} q_i \int \varepsilon_{kpr} x_p v_{i,r} \delta (\vec{x} - \vec{x}_i) dV \]

\[\vec{m} = \frac{1}{2} \sum_{i=1}^{N} q_i \vec{x}_i \times \vec{v}_i = \sum_{i=1}^{N} \frac{q_i}{2\mu_i} \vec{L}_i \]

where

\[\vec{L}_i = \mu_i \vec{x}_i \times \vec{v}_i \]

is the angular momentum of particle \(i \) about the origin. If all the particles are electrons with mass \(\mu_e \), for example, then the magnetic moment is

\[\vec{m} = -\frac{e}{2\mu_e} \sum_{i=1}^{N} \vec{L}_i = -\frac{e}{2\mu_e} \vec{L} \]

where \(\vec{L} \) is the total angular momentum of the collection of electrons.

Relation (16) is very important, and holds even on the atomic scale. However, it needs modification when applied to the internal angular momentum of individual particles, when quantum mechanics plays an important role. We can take the QM effects into account by
introducing a "fudge factor" g. For an electron, for example,

$$\vec{\tilde{m}} = -g \frac{e}{2\mu_e} \vec{s}$$

where \vec{s} is the electron spin and $g \simeq 2$. See Jackson page 565 for precise values of g.
See Jackson problem 6.5 for the relation between $\vec{\tilde{m}}$ and the electromagnetic field momentum.
5 Finding \vec{B} from the Biot-Savart Law

Alternatively, we can find the field by starting from the Biot-Savart law:

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{d\vec{e} \times (\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3}$$

Inserting the Taylor expansion of $1/R$, we get

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} I \int d\vec{e} \times \nabla' \left(\frac{1}{|\vec{x}|} + \frac{\vec{x} \cdot \vec{x}'}{|\vec{x}|^3} + \frac{\vec{x}' \cdot q \cdot \vec{x}'}{2} + \cdots \right) \tag{17}$$

Now $\nabla' \frac{1}{|\vec{x}|} = 0$, so the first term in equation 17 is zero. In the second term, $\nabla' (\vec{x} \cdot \vec{x}') = \vec{x}$, and $\oint d\vec{e} = 0$, so the first non-zero term is the third:

$$B_i = \frac{\mu_0 I}{8\pi} \varepsilon_{ijk} \int dx_j \nabla'_k (x'_l q_{lm} x'_m)$$

and

$$\nabla'_k (x'_l q_{lm} x'_m) = \delta_k l q_{lm} x'_m + x'_l q_{lm} \delta_k m = q_{km} x'_m + x'_l q_{lk}$$

since q_{lm} (7) is symmetric. Thus the dominant term in B is:

$$B_i = \frac{\mu_0 I}{4\pi} \varepsilon_{ijk} q_{km} M_{mj} = \frac{\mu_0 I}{4\pi} \varepsilon_{ijk} q_{km} (M_{mj} - \delta_{km} M_{ij})$$

Then using equation (4),

$$\varepsilon_{ijk} \delta_{km} M_{mj} = \varepsilon_{ijk} M_{kj} = -\varepsilon_{ijk} M_{jk} = -2m_i$$

and using the inverse relation (5):

$$\varepsilon_{ijk} M_{mj} = \varepsilon_{ijk} \varepsilon_{mjp} m_p = \varepsilon_{jki} \varepsilon_{jpm} m_p = (\delta_{kp} \delta_{im} - \delta_{km} \delta_{ip}) m_p = \delta_{im} m_k - \delta_{km} m_i$$

And thus:

$$B_i = \frac{\mu_0}{4\pi} \left(\frac{2m_i}{|\vec{x}|^3} + 3 \frac{x_k x_i m_k - x_k x_k m_i}{|\vec{x}|^5} \right)$$
or:

\[\vec{B} = \mu_0 \frac{1}{4\pi |\vec{x}|^3} \left(-\vec{m} + 3\frac{\vec{x}(\vec{m} \cdot \vec{x})}{|\vec{x}|^2} \right) \]

\[= \mu_0 \frac{1}{4\pi |\vec{x}|^3} (3\vec{r} (\vec{m} \cdot \vec{r}) - \vec{m}) \]

which is Jackson equation 5.56. This is a dipole field, as expected, but we do not get the delta function this way. Thus the result is valid for \(r > 0 \).