I. Instructor: Daniel Gallardo
Office Location: TH 208
E-mail: digallar@mail.sfsu.edu
Phone: (415) 338-3865
Help session: W 2:00 – 3:00 pm in Library (2nd Fl)
Office Hour: W 1:00 – 2:00 pm in Library (2nd Fl)

II. Materials Needed:
- General Physics Laboratory Manual, Physics 112 and Physics 122, Revised 2011, is on sale at the bookstore, and is bundled with the text for the lecture course.
- Hardbound, Quad-ruled lab notebook
- Calculator (Scientific preferred)
- Ruler, glue stick, and a pen
- Payment of $4 lab fee. (Forms handed out in lab; pay at cashier’s office, get form stamped, and bring me the receipt.)
 - The lab fee is paid on-line with credit card (MasterCard, American Express, and Discover, but not VISA) or electronic check. To pay online, go to the Bursar’s Office website (http://www.sfsu.edu/~bursar/). Using the menu options on the right-hand side, select Web Payment: Using Credit Card and e-Checks. Login and select “Additional Fees”, then from the Fee Category pull-down menu, select “PHYSICS LAB FEES”. From the Fee Description pull-down menu, select the appropriate class (Phys 112). Bring me a print out confirming payment.

III. Attendance:
You may miss one lab meeting without penalty, as your lowest lab grade and lab quiz will be dropped.
PLEASE NOTE: Lecture/lab co-enrollment is required. If you drop lecture, you will also be required to drop lab.

IV. Lab Notebooks:
Your lab notebooks are to be turned in each week, at the end of the lab. Your lab notebook should be an organized, legible, complete account of your lab work.

Please note:
1.) Include any lab notes taken at the beginning of class in your notebook, on separate pages from your lab write-up. Make sure to number the pages in your notebook, in order, and keep a table of contents in the front of your lab notebook, noting the page numbers for each lab assignment.
2.) Start each experiment on a new page; include the date, time, experiment title, and lab partners. For example:
 09/09/12 Computer Data Analysis and Plotting Janny; Kevin
3.) Use permanent pens only, no pencils or erasable pens, etc (make them black or dark blue). If you make a mistake simply cross it out neatly with a horizontal line through it, do not use whiteout. I will not grade you down for a mistake that is neatly crossed out and corrected.
4.) A common mistake is to include too little, or too much, in your first few lab write-ups. If you do not include enough information, it makes your write-up incomplete. If you include too much, you are probably including non-essential details, and you may not be able to finish within the allotted lab time. A complete but succinct lab write-up can be finished within the lab period.
5.) When you're finished, the question you should ask yourself is this: “If I read my lab book in 6 months, could I understand what was done in this experiment without referring to the lab manual? Could my lab partner do the same using my lab book alone?"
6.) Be sure to answer all questions asked in the lab manual. Put a box around each answer.
7.) At the end of the lab period, leave your lab book on the table at the front of the room. There will be no work required outside of class.

Format to follow:
**Before you start the experiment, write down:
1.) Purpose (Very briefly)—What are you trying to accomplish with this lab? 1-3 sentences should suffice. Think "big picture", not "well-first-I-did-this-then-I-did-that" cookbook style.

2.) Set-up — A brief description of the important aspects of the setup. You can use mostly schematic diagrams with appropriate variables labeled. Don't recopy the lab manual. This section should not be hugely time consuming—the three next sections are the main thrust of your write-up:
3.) Procedure – Describe the experiment you are doing as you are working. Use your own words to describe what you did. Try not to copy the lab manual.

4.) Data – You should present your data clearly. Always box all important results. Data tables (hand-drawn or Excel printout) are usually best. Always include units. Include uncertainties if available. Keep only three digits after the decimal point.

5.) Analysis – Clearly write down a formula first and double underline it, before you use it. Show how you worked through calculations. (If the calculations are repetitive, you only need to show an example.) It can be especially beneficial to write out the unit analysis for all calculations; I suggest you do this. If you are having Excel compute formulas for you, write the formulas on the printout, or type them into the column headers. Include graphs (hand-drawn or computer printout.) I will give you further information on how to make proper graphs (labeling axes, including units, scaling axes to fit data nicely onto the graph area, etc).

6.) Answers to lab manual questions -- Answer ALL numbered questions from the lab manual with detailed explanations and complete sentences. Single word answers and answers without any context are not acceptable.

Note: The labs this semester consist of several short procedures which each have their set of questions, as opposed to the labs of 1st semester which tended to consist of one large procedure.

V. Grades:
- Quizzes: A short quiz will be given at the start of each lab and will be worth 20% of your final grade.
- Lab notebooks: Will be graded weekly, and be worth 80% of your final grade, all previous aspects will factor into this grade as well as neatness and your participation.

VI. Course Objectives:
You should:
- Learn concepts in electromagnetism, optics, and modern physics from hands-on laboratory work.
- Increase confidence with data analysis, interpretation of graphs, and statistical calculations.
- Understanding of difference between theoretical values and experimental/observational values.
- Always include units in all steps of calculations (don’t just plug in units at the end).

VII. Learning Outcomes:
- You will use a variety of instrumentation and measurement techniques to measure physical quantities, determine the uncertainties in those measurements, and determine relationships between measured quantities.
- You will use computer software and computer-interfaced measurement hardware to collect and analyze data.
- You will use statistics, propagation of uncertainties, spectral analysis, and curve-fitting to analyze experimental results.
- You will record scientific observations and analysis in a lab notebook following accepted scientific practice.
- You will practice the scientific method of testing theory by experiment.
- You will carry out measurements and observations permitting you to verify some of the physical laws presented during the lecture part of the course.
- You will observe fundamental physical phenomena in the fields of mechanics, heat and oscillations.

VIII. Dropping and Withdrawal
If you drop or withdraw from the lab, you will have to drop the lecture PHYS 111 at the same time.
- Aug 27 – Sep 10: you are free to drop Phys 112 and Phys 111 during this period on your own.
- Sept 11 – Nov 26: during this period students can only withdraw with “W” using Withdrawal Procedure
- Nov 27 – Dec 17 withdraws can be approved only with "serious and compelling reasons."
- See the Physics and Astronomy Department policy on withdrawal at http://physics.sfsu.edu under Department Policies.

IX. Accessibility
- Students with disabilities who need reasonable accommodations are encouraged to contact the instructor. The Disability Programs and Resource Center (DPRC) is available to facilitate the reasonable accommodations process. The DPRC is located in the Student Service Building and can be reached by telephone (voice/TTY 415-338-2472) or by email (dprc@sfsu.edu).

X. Plagiarism
- Representing work done by others as your own work is expressly forbidden. See the Physics and Astronomy Dept. Plagiarism policy on http://www.physics.sfsu.edu under Department Policies.

XI. General
- I want to encourage everyone to use my help session and office hours, not just for lab questions, but for lecture questions as well.