Problem Set 8

Problem 1. a. Find the bound-state energy of a particle in a finite square-well potential

\[V(x) = \begin{cases}
0 & x < -a \\
-g/2a & -a < x < a \\
0 & x > a
\end{cases} \]

in the limit \(a \to 0 \).

b. Calculate the reflection and transmission coefficients in the same limit for an incident particle of momentum \(p \).

Problem 2. Find the bound-state energy, and the reflection/transmission coefficients, for a particle in the potential

\[V(x) = -g \delta(x). \]

Hint: First show that

\[\left. \frac{d\psi}{dx} \right|_{0+} - \left. \frac{d\psi}{dx} \right|_{0-} = -\frac{2mg}{\hbar^2} \psi(0) \]

(i.e., the first derivative is not continuous at \(x = 0 \)).

Second hint: To do this, integrate \(\frac{d^2\psi}{dx^2} \) from just on one side of the origin to the other, that is, from \(x = 0 - \varepsilon \) to \(x = 0 + \varepsilon \); and use the Schrodinger equation to relate this result to the potential energy \(V(x) \).