Physics 701: Classical Mechanics

Thornton Hall 425, San Francisco State University Fall 2015, MWF 5:10PM

Homework 6 Due 5:10PM 11/10

While I may have consulted with other students in the class regarding this homework, the solutions presented here are my own work. I understand that to get full credit, I have to show all the steps necessary to arrive at the answer, and unless it is obvious, explain my reasoning using diagrams and/or complete sentences.

Name ___________________________ Signature: ___________________________

1. (100 points) A central force potential frequently encountered in nuclear physics is the rectangular well, defined by the potential

\[V(r) = 0 \] for \(r > a \)

\[V(r) = -V_0 \] for \(r \leq a \)

Show that the scattering produced for such a potential in classical mechanics is identical with the refraction of light rays by a sphere of radius \(a \) and relative index of refraction

\[n = \sqrt{\frac{E + V_0}{E}} \]

where \(E \) is the energy of the particle. (This equivalence demonstrates why it was possible to explain refraction phenomena using both particle and wave mechanics). Show also that the differential cross-section is

\[\sigma(\theta) = \frac{n^2a^2 \left[n \cos \left(\frac{\theta}{2} \right) - 1 \right] \left(n - \cos \frac{\theta}{2} \right)}{4 \left(1 + n^2 - 2n \cos \frac{\theta}{2} \right)^2 \cos \frac{\theta}{2}} \]